\boldsymbol{B}

Trees

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

(CSE, CSE-CS, CSE-AIML, CSE-DS, CSE-IOT, IT, AIDS & AIML)

II B.Tech I Semester Supplementary Examinations, July/August 2023
Data Structures Using Python

		,					,			, ,				. ,	
			Roll No												
Time:	3 hor	ırs				.								Max. Ma	rks: 70
			ion paper Consis	ts of 5	Sec	tions	. An	swer	FIV	ΈO	uesti	ions.	Cho		
		-	h SECTION and							_		,			
						*:	**								
								<u>)N-I</u>							
1			e the Major uses				? Illu	strate	e Mu	ıltipl	e and	d Mu	ıltile	vel	[14M]
		Inhe	ritance with rele	vant e	xamj	oles	0.0								
•		Who	tia an Abatmaat	Class	and I	Lavy	OR		2021	T4 in	D41		Com	nalata	[1.4]
2			t is an Abstract morphism with					-			•				[14M]
		them		micin	ance	and	prov	iuc p	торс	I CA	piani	ation	Ont)Otil 01	
		then				SEC	CTIC	N-II	[
3		Wha	at are sequence	data t	ypes				-	ne va	ariou	ıs py	thon	sequence	[14M]
		opera	ations and function	ons in	detai	1.								•	
							OR								
4	A		sify different Con	-											[7M]
	\boldsymbol{B}		to perform Stri	ng Slic	cing	in Py	thon	. Wr	ite th	ne su	ppor	ting	code	in	[7M]
		Pyth	on?			SEC	TIA	NI II	г						
5	\boldsymbol{A}	"Seld	ecting the pivot	eleme						ick s	ort"	siint	ort 1	his	[7M]
	7.		ment with prope		_	-									[/1/1]
			cting the pivot.	<u>-</u> -			P								
	\boldsymbol{B}	Disc	uss how to search	h eler	nents	s usir	ıg Bi	nary	sear	ch w	ith s	uital	ole e	xample.	[7M]
		Writ	e the advantages	using	g Bin	ary s	earcl	n?							
_		_ ~			_	_	OR								
6	A		ne Array? Class	-			-		-		1		0		[7M]
	В	Disc	uss about the M	ajor O	-			-		rme	l on	Arra	ys?		[7M]
7	\boldsymbol{A}	Writ	e an algorithm t	n ince		SEC			_	rom	ctacl	ze?			[7M]
,	B		t is Circular Lin										hat a	re	[7M]
	D		ormed on it?	ica D	ists.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	t are	1110 1	·rago	· op	01441		11000		[/1/2]
		r					OR								
8	\boldsymbol{A}	Writ	e an algorithm t	o insei	t nev	v no	de at	the b	egin	ning	, at 1	midd	le po	osition	[7M]
			at the end of a D												
	\boldsymbol{B}	Disc	uss about the M	ajor A	pplic					nd Q	ueue	s?			[7M]
		D (*	G 10 G1		20			N-V		1 0					F#3 #3
9	A		ne Graph? Class	•					-		1	. .		19	[7M]
	B	DIII	erentiate Weight	eu vs	∪nw	eignt	ea C OR	ırapn	s W1	ın re	ievai	ııı ex	amp	ies :	[7M]
10	\boldsymbol{A}	Expl	lain the process	of find	ino t	he m	_	ıım a	nd n	naxii	num	eler	nent	s of the	[7M]
10	41	-	ry trees.	,1 1111U	<u>5</u> t	.10 111		U	1	iiu/XII		. 0101	110111	o or the	[,141]
	n	D C	AND TO O	XX7	41	1 ·			41			c.	1	A 7.7T	F#3 #3

Define AVL Tree? Write the Major rotations that are performed on AVL [7M]

Code No: **R20A0504**

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech I Semester Supplementary Examinations, July/August 2023 **Operating Systems**

(CSE, CSE-CS,	CS	E-A	IMI	L, C	SE-J	DS,	CSE	Z-IO	T &	IT)
Roll No										

Time: 3 hours Max. Marks: 70

Note: This question paper Consists of 5 Sections. Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

SECTION-I

		SECTION-I	
1	Α	Explain real-time and desktop systems with example	[8M]
	В	Describe about OS services.	[6M]
		OR	L- 1
2	A	Discuss the simple operating system structure. Describe the layered	[7M]
		approach.	
	В	Demonstrate importance of Multi Programmed Systems	[7M]
	2	SECTION-II	[,1,2]
3	A	Explain Cooperating Processes with example.	[8M]
J	11	Explain Cooperating Processes with example.	[OIVI]
	В	Explain Multilevel Queue scheduling algorithm	[6M]
		OR	[]
4	A	Explain the following schedulers.	[6M]
•	1.	(i)Medium term scheduler (ii)Short-term Scheduler	[01/1]
	В	Assume the following workload in a system:	[8M]
	D	Process Arrival Time Burst Time	[OIVI]
		P1 0 5	
		P2 1 6	
		P3 2 7	
		Draw a Gantt chart illustrating the execution of these jobs using Round	
		Robin scheduling algorithm and also Calculate the average waiting time and	
		average turnaround time.	
_		SECTION-III	F#3 #1
5	A	Demonstrate the methods for handling deadlocks?	[7M]
	В	Explain Banker's algorithm to avoidance of dead lock.	[7M]
_		OR	
6	Α	Specify any two methods for deadlock Prevention.	[6M]
	В	What is semaphore? Explain Dining philosopher problem using semaphore	[8M]
		SECTION-IV	
7	A	ExplainIPC between processes on different systems using FIFO system	[10M]
	В	Define FIFO? Write the syntax for Creation of FIFO?	[4M]
		OR	
8	A	What is shared memory? Explain shared memory with example	[7M]
	В	Explain Demand paging with example.	[7M]

SECTION-V

9	A	What is File system? Explain file allocation methods with example?	[7M]
	В	Consider the following disk request sequence for a disk with 100 tracks 45,	[7M]
		21, 67, 90, 4, 50, 89, 52, 61, 87, 25 .Head pointer starting at 50 and moving	
		in left direction. Find the number of head movements in cylinders using	
		SCAN scheduling.	
		OR	
10	A	Explain importance of directory structure in a file system	[7M]
	В	What is system call? Explain the following system calls	[7M]
		(i)open (ii)create (iii read	

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech I Semester Supplementary Examinations, July/August 2023 Design and Analysis of Algorithms

(CSE, CSE-AI&	ML	, IT	B. 7	Tech	-AI	DS &	& В.	Tec	h-A	IML	(
	Roll No											

Time: 3 hours Max. Marks: 70

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

SECTION-I

- 1 A Illustrate the properties of algorithm and write an algorithm to find third largest [7M] element in the given list.
 - **B** Calculate space and time complexity for the following algorithm. Algorithm Fib(n) { if((n=0) or (n=1)) then return n; else { F1:=0;F2:=3; i:=3; While(i<=n) { F:=F1 + F2; F1:=F2; F2:=F; i:=i+1; } Return F; } }

OR

2 A Implement Quick Sort for the given dataset

26

31 44 55 20

B Calculate space and time complexity for the following algorithm Algorithm Sample(n) { a=0; for(i=0; i < n; i++) {for(j=n; j > i; j--) { a=a+i+j; } }

SECTION-II

3 A Given an array of jobs where every job has a deadline and associated profit if the job is finished before the deadline. It is also given that every job takes a single unit of time, so the minimum possible deadline for any job is 1. How to maximize total profit if only one job can be scheduled at a time. Input: Four Jobs with the following deadlines and profits

JobID	Deadline	Profit
A	4	20
В	1	10
C	1	40
D	1	30

B What is Minimum cost spanning tree? Explain an algorithm for generating minimum cost spanning tree and list some applications of it

[7M]

OR

4 *A* Generate the shortest paths for the given graph from vertex 1 to all remaining vertices. 1->2=20, 2->1=2, 1->3=15, 2->5=10,2->6=30, 3->6=10, 3->4=4, 5->4=15,6->4=4, 6->5=10 using Prims algorithm [7M]

B A motorist wishing to ride from city A to B. Formulate greedy-based algorithms to generate the shortest path and explain with an example graph apply Kruskal's algorithm. [7M]

SECTION-III

5 *A* Find an optimal solution to the knapsack instance n=7, m=15,(p1,p2,....p7)=(10,5,15,7,6,18,3) and (w1,w2,....w7)=(2,3,5,7,1,4,1) using dynamic programming.

B Define And Or Graph problem (AOG) with an example. Prove that AOG is NP-Hard for the following formula $F = (x1Vx2Vx3) \land (\sim x1V\sim x2Vx3) \land (\sim x1Vx2)$.

OR

6 A What is dynamic programming? Design an algorithm to solve the 0/1 knapsack [7M] procedure for dynamic programming

B Write warshall's algorithm and apply it to compute transitive closure for the directed graph for the adjacency matrix shown below: [7M]

	2 1	D	_	$\boldsymbol{\nu}$
\overline{A}	0	1	0	0
В	0	0	0	1
\overline{C}	0	0	0	0
\overline{D}	1	0	1	0

SECTION-IV

- 7 A Discuss the sum of the subset problems with an example $S=\{1,3,4,5\}$ and M=8 [7M]
 - **B** Describe in detail graph coloring using back tracking?

OR

- **8 A** Explain eight queen's problems with a pseudo-code
 - **B** Describe Hamiltonian cycle with an example.

SECTION-V

- **9** A List the types of problems on which Branch and Bound Technique can be applied? Give examples.
 - **B** Explain Cook's Theorem.

OR

10 A Solve the following instance of knapsack problem by least cost branch and bound algorithm., with knapsack capacity of 25

object	1	2	3	4	5	6	7
weight	5	7	2	8	6	4	3
profit	30	20	15	45	90	22	38

B Briefly explain the FIFO branch and bound solution with example?

[7M]

[7M]

[7M]

[7M]

[7M]

[7M]

Max. Marks: 70

Code No: **R20A0506**

Time: 3 hours

B

disadvantages.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech I Semester Supplementary Examinations, July/August 2023 Computer Organization

(CSE, CSE-CS, CSE-AIML, CSE-DS & AIML)										
Roll No										

Note: This question paper Consists of 5 Sections. Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks. **SECTION-I** 1 What are the functional units of a computer system? Explain the way of \boldsymbol{A} [7M] handling information by each of them? \boldsymbol{B} Discuss the generations of computers based on the development technologies [**7M**] used to fabricate the processors, memories and I/O units. Write about various general purpose registers involved in the typical 2 \boldsymbol{A} [7M] computer system. "System software is responsible for coordination of all activities in a \boldsymbol{B} [7M] computing system"- Justify this statement with the functionalities of it. **SECTION-II** 3 Write about various means by which data are transferred between memory of \boldsymbol{A} [7M] a computer and outside world. Write the subroutines for parameter passing through registers. \boldsymbol{B} [7M] What is register transfer notation? Write and explain these notations to three-4 [14M] address, two-address, single address and zero-address instruction types. Explain the following example X = (A*B) + (C*D)**SECTION-III** Define Micro-operation and Micro-program. 5 \boldsymbol{A} [7M] Define Micro-Instruction and Explain basic organization of micro \boldsymbol{B} [7M] programmed control unit. OR Discuss load/store instructions for multiple operands. 6 \boldsymbol{A} [7M] B Write short notes on branch instructions. [7M] **SECTION-IV** 7 Explain the static RAM and Dynamic RAM. \boldsymbol{A} [7M] Discuss the possible methods for specifying the placement of memory blocks B [7M] in cache. OR 8 Relate the access speed, size and cost of various memories in memory [7M] \boldsymbol{A} hierarchy system.

What are the possible configurations of ROM? Explain with advantages and

SECTION-V

9	\boldsymbol{A}	Give few examples of external interrupts and few examples of internal interrupts. What is the difference between a software interrupt and subroutine call?	[7M]
	В	What is the difference between isolated I/O and memory mapped I/O? What are the advantages and disadvantages of each? OR	[7M]
10	A	Explain the concept of pipeline to speed up the instruction execution. Explain with five stage pipelining.	[7M]
	\boldsymbol{B}	Explain RISC and CISC	[7M]

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech I Semester Supplementary Examinations, July/August 2023 Probability and Statistics

(CSE, CSE-CS, CSE-AIML, CSE-DS, CSE-IOT, IT, AIDS & AIML)

Roll No

Time: 3 hours Max. Marks: 70

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Ouestion from each SECTION and each Ouestion carries 14 marks.

SECTION-I

1 A random variable X has the following probability function:

X	0	1	2	3	4	5	6	7
P(x)	0	K	2K	2K	3K	K ²	2K ²	7K ² +K

Determine (i) K (ii) Evaluate P(X<6), P(0<X<5) (iii) mean (iv) variance OR

- 2 A If X is a continuous random variable and Y=aX+b, prove that E(Y)=a E(X)+b [7M] and $V(Y)=a^2V(X)$, where V stands for variance and a,b are constants
 - B If a random variable has the probability density f(x) as $f(x) = \begin{cases} 2e^{-2x}, & \text{for } x > 0 \\ 0, & \text{for } x \le 0 \end{cases}$ find the probabilities that it will take on a value

(i) between 1 and 3 (ii) greater than 0.5

SECTION-II

3 A Derive mean and variance of the Binomial distribution.

[**7M**]

[7M]

[14M]

B If a random variable has a poisson distribution such that P(1)=P(2), Find

[**7M**]

(i) mean (ii) P(4) (iii) P(1 < X < 4) (iv) variance

λR

4 A Fit a poisson distribution to the following data

[**7M**]

Х	0	1	2	3	4	5	Total
f	142	156	69	27	5	1	400

B In a normal distribution 31% of the items are under 45 and 8% are over 64. Find the mean and variance of the distribution

SECTION-III

5 A Find if there is any significant correlation between the heights and weights given below

[**7M**]

given below									
Height	57	59	62	63	64	65	55	58	57
in									
inches									
Weight	113	117	126	126	130	129	111	116	112
in lbs									

	В	From the following data calculate (i)Correlation coefficient (ii) Standard						[7M]				
		deviation of Y	(σ_y)									
		$b_{xy} = 0.85; b_y$		$89; \sigma_x =$	= 3							
						OR						
6	\boldsymbol{A}	Obtain the ran	k corre	elation o	coeffici	ent for	the foll	owing	data			[7M]
		X 68	64	75	50	64	80	75	40	55	64	
		Y 62	58	68	45	81	60	68	48	50	70	
	\boldsymbol{B}	Find the mean									nt	[7M]
		from the follow	wing re	egressio	n equa	tions. 2	Y-X-50	0=0, 31	7-2X-1	0 = 0		
						CTION						
7	\boldsymbol{A}	Write about (i) Critical region (ii) Left tailed test (iii) Right tailed test [7]							[7M]			
	\boldsymbol{B}	In a hospital 4										[7M]
		figures confir	m the	hypoth	esis th	at male	es and	female	s are	born ir	n equal	
		number?				OD						
0	4	A	400001	400 4	:	OR		d . ′	216 4:	Т	aa4 41aa	[#N /[]
8	\boldsymbol{A}	=							[7M]			
	В	hypothesis that the coin is unbiased. Use a 0.05 Level of significance A sample of 64 students have a mean weight of 72 kgs. Can this be regarded								[7M]		
	D	as a sample from a population with mean weight 58 kgs and S.D 27 kgs									[/141]	
		SECTION-V										
9 Explain Chi square distribution and F-distribution								[14M]				
	OR											
10	10 A random sample of 10 boys had the following								[14M]			
		I.Q's:70,12	20.110	,101,88	,83,95,	98,107	and 10	0				
		(a) Do these data support the assumption of a population mean I.Q of 100?										

(b) Find a reasonable range in which most of the mean I.Q values of samples of 10 boys lie

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech I Semester Supplementary Examinations, July/August 2023 **Managerial Economics and Financial Analysis**

(CSE, CSE-CS, CSE-AIML, CSE-DS, CSE-IOT, IT, AIDS & AIML) Roll No

Time: 3 hours Max. Marks: 70

Note: This question paper Consists of 5 Sections. Answer FIVE Questions, Choosing ONE Ouestion from each SECTION and each Ouestion carries 14 marks.

SECTION-I

1	\boldsymbol{A}	Explain how Managerial Economics provide solutions to business problems.	[7M]
	\boldsymbol{B}	Differentiate between Durable and Perishable goods with examples.	[7M]
		OR	
2	\boldsymbol{A}	State the Law of Demand with its assumptions and exceptions.	[8M]

В What are the factors governing Elasticity of Demand? [6M] **SECTION-II**

What is Economies of Scale? Explain the types of Economies of Scale. 3 \boldsymbol{A} [8M] What are the features of Isoquant? B [6M]

OR

Explain the Cobb-Douglas Production Function. 4 \boldsymbol{A} [7M] B Differentiate between Fixed cost and Variable cost with examples. [7M]

SECTION-III

Compare the features of Perfect competition and Monopoly. 5 [8M] \boldsymbol{A} В Explain in detail the two important documents required for forming a [6M] company.

Explain the price output determination under Monopoly. 6 [8M] \boldsymbol{A} Explain the following pricing strategies В [6M]

1. Skimming pricing

2. Penetration Pricing.

SECTION-IV

Prepare the format of Trading and Profit and Loss Account with your 7 \boldsymbol{A} [8M] imaginary figures.

Explain the content and purpose of Balance Sheet. В

[6M]

What do you understand by Double Entry Book Keeping of Accounting? 8 \boldsymbol{A} [7M] \boldsymbol{B} [7M]

Explain the Accounting Rules for assigning debit and credit to the accounts.

SECTION-V

The following are the extracts from the financial statements of Blue and Red [10M] 9 \boldsymbol{A} Ltd as on March 2017 and 2018 respectively.

Particulars	31.03.2017	31.03.2018		
	(Rs)	(Rs)		
Stock	10,000	25,000		
Debtors	20,000	20,000		
Bills Receivables	10,000	5,000		
Cash in Hand	18,000	15,000		
Bills Payable	15,000	20,000		
Bank Overdraft		2,000		
9% Debentures	5.00.000	5,00,000		
Sales for the year	3.50,000	3,00,000		
Gross profit	70,000	50,000		

Compute the following Ratios for both the years

- 1. Current Ratio
- 2. Quick Ratio

 \boldsymbol{B}

- 3. Debtors Turnover Ratio
- [4M] OR **10** What is Financial Analysis? Explain to whom Ratio Analysis is useful. [8M] \boldsymbol{A} Differentiate between Current Assets and Current Liabilities with examples. [6M] B

How the profitability of organisation is assessed with Ratios?